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1. INTRODUCTION

Let Q be convex on R, with

min
R
Q=0,

and with Q growing at . faster than log |x|. Then Q admits the represen-
tation

Q(x)=F
.

0
gSy (x) dy, x ¥ R,(1.1)

where {Sy} is a suitable increasing sequence of compact intervals and gSy
denotes the Green function for C0Sy with pole at .. This representation
was discovered by Rakhmanov [14], and it turned out to be indispensable



in the study of orthogonal polynomials for the weight W=exp(−Q), and
in several other contexts [2], [6], [7]. Actually (1.1) was proved in [14]
for a special class of convex Q. The general result was announced in [3].

Inspired by that paper, the authors proved (1.1) in [9], using results of
Totik [17] on equilibrium measures for the family of weights {wl}l > 0. This
was then applied in studying orthogonal properties for non-even weights. A
far reaching generalisation of (1.1) appeared in a recent paper of Buyarov
and Rakhmanov [4]. They proved that (1.1) holds (for x ¥1y Sy ı R), for
example, for any continuous function Q, and beyond. Note that (1.1) may
be rewritten as

Q(x)=F
.

0

3 log
1

cap Sy
−Uwy(x)4 dy,(1.2)

where

Uwy(x) :=F log
1

|x−s|
dwy(s)

is the (logarithmic) equilibrium potential for the set Sy.
Since the study of rational functions is intimately connected with Green

potentials, there is good reason to believe that an analogue of (1.2) for
Green potentials will be useful for problems involving rational functions,
just as (1.2) is useful for problems involving polynomials. For a wide class
of functions Q on a set E (that is not necessarily a real interval) in a
domain G ı C, we show that there is a suitable increasing family of
compact sets Sy ı E, y > 0, such that for t > 0 and z ¥ St,

Q(z)=F
t

0

3 1
capG Sy

−Vw
G
y (z)4 dy.(1.3)

Here capG Sy denotes the Green capacity for the set Sy, and if g(z, t)
denotes the Green’s function for G with pole at t,

Vw
G
y (z) :=F

Sy
g(z, t) dwGy (t)

denotes the Green potential for the Green equilibrium measure wGy for Sy.
We emphasise that in the sequel the symbol V is associated with Green
(and not logarithmic) potentials.
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Since {Sy}y > 0 is increasing, so that the integrand in (1.3) is 0 for y > t,
one also deduces from (1.3) that

Q(z)=F
.

0

3 1
capG Sy

−Vw
G
y (z)4 dy, z ¥1y > 0 Sy.(1.4)

But what is a suitable {Sy}y > 0? This is easy to explain. We have

F
t

0
Vw

G
y (z) dy=F

t

0

5F
Sy
g(z, t) dwGy (t)6 dy.

Hence if we define the measure mt on St by

mt :=F
t

0
wGy dy,(1.5)

we obtain, by Fubini, that

F
t

0
Vw

G
y (z) dy=F

St
g(z, t) dmt(t)=Vm t(z),(1.6)

where Vm t is the Green potential of mt. We also see from (1.5) that

mt(St)=F
t

0
wGy (St) dy=F

t

0
dy=t.

(Recall that wGy has mass 1 and is supported on Sy ı St). Thus mt has mass
t, and is supported on St. Now assuming that (1.3) holds, we obtain from
(1.6) that

Vm t(z)+Q(z)=ct, z ¥ St,(1.7)

where we set

ct :=F
t

0

dy
capG Sy

.(1.8)

Moreover, assuming, for the moment, that

E=0
y > 0

Sy
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(which is not always the case), and keeping in mind that

Vw
G
y (z) [

1
capG Sy

, z ¥ G,(1.9)

we obtain from (1.4) that

Vm t(z)+Q(z) \ ct, z ¥ E.(1.10)

The relations (1.7), (1.10) imply that mt is the Green equilibrium measure of
mass t for the external field Q. Hence if (1.3) holds, then the set St must
coincide with the support of mt.

In the next section, we describe the class of functions for which (1.3) will
be proved, and present the main theorem. We also recall some basic
notions and results from potential theory. The rest of the paper is devoted
to proofs. We could prove (1.3) using the above-mentioned results of Totik
(which can be extended to deal with Green potentials), but we preferred to
follow the same steps as in [4], thereby obtaining some other useful results,
parallel to those proved in [4].

2. PRELIMINARIES AND MAIN THEOREM

Let G be any domain in Cb, whose boundary “G has positive capacity,
and let g(z, t) denote the Green function for G with pole at t. So g is
characterized by the following properties:

(i) As a function of z, with t fixed, g(z, t) is non-negative,
subharmonic in Cb 0{t} and harmonic in G0{t};

(ii) g(z, t)+log |z−t| remains bounded as zQ t;
(iii) g(z, t)=0 for q.e. z ¥ “G where q.e. (quasi-everywhere) means

except for a set of capacity 0.

Given a finite positive measure m on G, we recall that its Green potential
Vm is defined by

Vm(z)=F g(z, t) dm(t), z ¥ G.
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The support of m will be denoted by Sm, and we always assume that Sm is a
compact subset of G. Such a Vm is l.s.c. (lower semi-continuous) and
superharmonic in G. Also

lim
zQ x ¥ “G

Vm(z)=0 for q.e. x ¥ “G.(2.1)

Hence by the minimum principle, Vm > 0 in G (but may attain the value .).
Furthermore, Vm is continuous in the fine topology (this is the weakest

topology making all potentials continuous). This implies that for any z0 ¥ G
and any e > 0, the set

{z ¥ G : |Vm(z)−Vm(z0)| \ e}(2.2)

(with obvious adjustment for the case Vm(z0)=.) is thin at z0. All these
notions and facts can be found in, for example, [16, Chapters 1, 2] or [8,
Theorem 5.11]. When using the fine topology, we shall say so. Thus, unless
otherwise mentioned, all limits and topological notions are with respect to
the usual Euclidean topology.

Given a function Q : EQ (−.,.], we say that Q is admissible on E if
the following properties hold for E and Q:

(A.1) E is closed in G. (That is, E is closed relative to G).
(A.2) E is not thin at any of its points. (Such an E is called regular).
(A.3) E has empty interior, and for any compact K … E, the comple-

ment G0K is connected.
(A.4) Q is l.s.c. on E and the set {z ¥ E : Q(z) <.} has positive

capacity. (In particular, cap (E) > 0, though this follows from (A.2) as
well).

(A.5) For any z0 ¥ E with Q(z0) finite and for any e > 0, the set

{z ¥ E : |Q(z)−Q(z0)| < e}(2.3)

is not thin at z0. (Since Q is l.s.c., this also gives

lim inf
zQ z0

Q(z)=Q(z0)).

(A.6) If z0 ¥ “G or z0=. is a limit point of E, then

lim
zQ z0, z ¥ E

Q(z)=..
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Note that (A.1), (A.4) and (A.6) imply that for any N> 0, the set
{z ¥ E : Q(z) [N} is a compact subset of G.

Remarks.

(a) If Q is admissible on E, then Q+Vm is also admissible, as follows
from the properties of Vm above.

(b) All of the above are satisfied if, for example, E is a smooth arc,
possibly unbounded, and Q is piecewise continuous on E, satisfying (A.6).

(c) For some of our results, we do not need all of (A.1) to (A.6), and
shall point this out where relevant.

Next, we need well known results on Green equilibrium potentials: let

Mt :=Mt(E) :={m : Sm ı E and m(E)=t}.

For m ¥Mt, consider its energy integral

I(m) :=I(m, Q)

:=FF [g(z, t)+Q(z)+Q(t)] dm(z) dm(t)

= F Vm dm+2t F Q dm.

Theorem 2.1. Assume (A.1), (A.4) and (A.6).

(a) There exists a unique mt ¥Mt such that

It :=It(mt) :=inf{I(m) : m ¥Mt}.(2.4)

Moreover, It is finite, and mt has finite energy:

(0 [ ) F Vm dmt <..

(b) The support Sm t of mt is a compact subset of G, and more precisely
for some N,

Sm t ı {z ¥ E : Q(z) [N}.

(c) Setting

ct :=ct(Q) :=t−1 5It−F Q dmt6 ,
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we have

Vm t(z)+Q(z) \ ct, q.e. z ¥ E;(2.5)

Vm t(z)+Q(z) [ ct, all z ¥ Sm t .(2.6)

This measure mt is called the equilibrium measure of mass t for the external
field Q, and ct is called the equilibrium (or extremal) constant.

Remark. Since t−1Q satisfies the same conditions as does Q, it suffices
to prove the theorem for t=1. For this case, it appears in [16, Theorem
II.5.10], but under two additional restrictions. First, instead of (A.6), it is
assumed in [16] that Q(z)− log |z|Q. as zQ. (if E is unbounded),
while we only assumed that Q(z)Q. in this case. Second, no assumption
on Q is made in [16], if E has limit points on “G. This is due to the (tacit)
agreement that the phrase ‘‘closed subset E … G’’ used there, actually
means that the closure of E in C still belongs to G (otherwise the result is
incorrect, if Q is bounded near “G). Yet the proof of Theorem 1 requires
only minor modifications of that in [16], so we only indicate two places
where (A.6) comes into play.

Proof.

(a) Being l.s.c., and since Q > −. on E, Q is bounded below on
compact subsets of E. Then (A.6) ensures that Q is bounded below on the
whole of E (and of course attains its minimum on E). Since Vm \ 0, it
follows that the infimum in (2.4) is > −.. That it cannot be ., is proved
by standard methods, using (A.4). Denote this infimum by I1 (that is, It
with t=1).

(b) Let

EN :={z ¥ E : Q(z) [N}.

According to (A.6), EN is compact and we use (A.6) again to show that for
N large enough,

I1=inf{I(m): m ¥Mt, Sm ı EN}.(2.7)

Once we have this, the rest of the proof is exactly the same as indicated in
[16, pp. 28–29, p. 132]. To prove (2.7), it is enough in turn to show that
for N large enough,

g(z, t)+Q(z)+Q(t) > 1+I1, (z, t) ¨ EN×EN(2.8)
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(see [16, pp. 29–30] for deduction of (2.7) from (2.8)). But (2.8) is obvious
for large N, since g \ 0, Q is bounded from below, and either Q(z) or Q(t)
is larger than N. L

Under additional assumptions on E and Q, one can strengthen (c) of
Theorem 2.1:

Theorem 2.2. Assume (A.1, (A.2) and (A.4)–(A.6), that is, we only drop
the geometrical condition (A.3) on E. Then (2.5) can be refined to

Vm t(z)+Q(z) \ ct, all z ¥ E,(2.9)

so that (2.6) becomes

Vm t(z)+Q(z)=ct all z ¥ Sm t .(2.10)

Moreover, Q is continuous on Sm t , and V
m t is continuous and bounded on G.

Proof. This is standard. By (2.5), the exceptional set

EŒ :={z ¥ E : Vm t(z)+Q(z) < ct}

has capacity 0, so it is thin at every point of E. Then the continuity of Vm t
in the fine topology (see (2.2)) together with (A.2), (A.5) ensures, for any
z0 ¥ E, the existence of {zn} ı E0EŒ such that

(Vm t+Q)(zn)Q (Vm t+Q)(z0), nQ..

Then (2.9) follows from (2.5). Since Vm t is l.s.c., while ct−Q is u.s.c. (upper
semi-continuous), (2.10) shows that Vm t and Q are continuous on Sm t . Then
Vm t is continuous in G (cf. [16, Thm. II.3.5] and recall that the Green
potential of mt differs from the logarithmic potential by a harmonic func-
tion). The boundedness of Vm t in G follows by the maximum principle for
Green potentials (cf. [16, Cor. II.5.9]). L

Finally, recall that for the case Q — 0, the following classical result holds:

Theorem 2.3. Let K be a compact subset of G, with cap(K) > 0. There
exists a unique probability measure wGK, supported on K and such that for
some constant c > 0,

Vw
G
K(z)=c q.e. z ¥K;(2.11)

Vw
G
K(z) [ c all z ¥ G.(2.12)
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We call wGK the Green equilibrium measure, for K. Furthermore if E :=K
also satisfies (A.3), then

cap(K0SwGK )=0(2.13)

and the Green equilibrium measures formed for K and for SwGK coincide. Also,
(2.11) holds at every regular point of K; if K is regular, then SwGK=K and
Vw

G
K is continuous in G.

The Green capacity of K (relative to G) is defined by

capG (K)=c−1,(2.14)

where, of course, c is as in (2.11–12).
Next, for a measure s supported on E, we set

c(s) :=c(s, Q) :=min
E
(Vs+Q),(2.15)

and

Ss :=Ss(Q) :={z ¥ E : Vs(z)+Q(z)=c(s)}.(2.16)

Notice that Ss is a compact subset of G (by (A.1), (A.4) and (A.6)). We see
from these definitions, that the equilibrium conditions (2.9), (2.10) are
equivalent to the inclusion

Ss ı Ss.(2.17)

Hence, under the assumptions of Theorem 2.2, (2.17) holds with s=mt
(and with c(s) in (2.15) equal to ct). Moreover, mt is the only measure in
Mt that satisfies (2.17) (see [16, Theorem II.5.12]). Now we can formulate
the main result. It will be convenient to use the abbreviations

St :=Sm t ; S
t :=Sm t; V t :=Vm t;

wt :=w
G
Smt
; w t :=wGSmt ,

(2.18)

and recall that ct coincides with c(mt). Thus wt is the (unweighted, classical)
Green equilibrium measure for the support Sm t=St of mt; and w t plays the
same role for the set S t where Vm t+Q=V t+Q attains its minimum. Also,
as mt is not affected if we replace Q by Q+ Const, we assume that

min
E
Q=0.(2.19)
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Theorem 2.4. Let Q be admissible on E and satisfy (2.19).

(a) The family {St}t > 0 is an increasing family of sets. Moreover, if we
set

S0 :={z ¥ E : Q(z)=0},

then

S0=3
t > 0

St.(2.20)

(b) There holds

St= 0
y < t

Sy ı 3
y > t

Sy=S t, t > 0,

and there exists a countable set N … (0,.) such that

cap(S t0St) 0, t ¨N.

(c) The equilibrium measure mt and the extremal constant ct have the
representations

mt=F
t

0
wy dy; ct=F

t

0

1
capG Sy

dy.(2.21)

(d) The external field Q has the representation

Q(z)=F
.

0

1 1
capG St

−Vw t(z)2 dt, z ¥ 0
t > 0

St.(2.22)

Remarks.

(a) Let

S. :=0
t > 0

St.

It follows from Theorem 2.2 that if S. ] E, then

Q(z) \ sup
t
{ct−V t(z)}, z ¥ E0S.,(2.23)
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and one can assign Q an arbitrary value on E0S. (but subject to (2.23))
without affecting the family {Sy}y > 0. Obviously,

{z : Q(z)=.} ı E0S.,

but it is worth noting that there may exist z ¥ E0S. with Q(z) <..
(b) The convergence of the integral for ct in (2.21) implies that

capG Sy cannot approach 0 too rapidly as yQ 0+; in particular it is not
possible that

capG Sy=O(y), yQ 0+.

3. EXTREMAL PROPERTIES OF ct, St

We first establish

Theorem 3.1. Under the assumptions of Theorem 2.2, we have

ct=c(mt)=sup{c(s): s ¥My, y [ t}.(3.1)

Moreover, if (A.3) is satisfied, that is, Q is admissible, then equality holds in
(3.1) only for s=mt.

Proof. For any measure s on E, we have, by the definition (2.15) of
c(s), and by Theorem 2.2:

Vs+Q−c(s) \ 0=V t+Q−ct on St.(3.2)

Hence

Vs \ V t+c(s)−ct on St.(3.3)

Let y > 0 and s ¥My. Then by (2.12), (2.14),

F Vs dwt=F Vw t ds [
y

capG St
.

Similarly by (2.11),

F V t dwt=F Vw t dmt=
t

capG St
.
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(Note that although E is regular, St need not be regular, so that (2.11)
holds q.e. in St. However mt has finite energy, hence it is C-absolutely con-
tinuous, that is, sets of capacity 0 have zero mt-measure). On integrating
(3.3) against wt, we thus obtain

ct−c(s) \
t− y

capG St
.(3.4)

This holds for any y, and if y [ t, we get (3.1). Next, if s=my , where y > 0,
we obtain that

ct−cy \
t−y

capG St
.(3.5)

Reversing the roles of t and y, we also get

ct−cy [
t−y

capG Sy
.(3.6)

(We shall use (3.5) and (3.6) later on). Assume now that s ¥My, y [ t, and
c(s)=ct. Then (3.4) shows that y=t. Also, (3.3) then becomes

Vs \ V t on St.

Integrating this against wt, we obtain as before

t
capG St

\ F Vs dwt \ F V t dwt=
t

capG St
.(3.7)

Hence

F (Vs−V t) dwt=0,

and since the integrand is non-negative, the set

K :=Sw t 5 {z: (V
s−V t) (z) > 0}

has wt-measure 0. On the other hand, K being an intersection of Sw t with
an open set (recall that V t is continuous while Vs is l.s.c.) must have posi-
tive wt-measure, if it is non-empty. We have thus showed that K is empty,
so

V t(z)=Vs(z) all z ¥ Sw t .(3.8)
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Now the assumption (A.3) comes into play. It implies (via the maximum
principle for harmonic functions) that strict inequality holds:

Vw t(z) <
1

capG St
, z ¥ G0Sw t .

Therefore, if Ss ł Sw t ,

F Vs dwt=F Vw t ds <
t

capG St

and we obtain a contradiction to (3.7). So Ss ı Sw t and then (3.8) shows
that Vs is bounded on Ss, hence has finite energy. Since we have simulta-
neously (from (3.8))

Vs [ V t on Ss and V t [ Vs on St,

we conclude by the principle of domination for Green potentials (cf. [16,
Theorem 11.5.8]) that Vs=V t in G and hence s=mt. L

Next, given a compact K ı E of positive capacity, we set for t > 0,

Ft(K) :=Ft(K, Q) :=−
t

capG K
−F Q dwK.(3.9)

This functional was introduced in [10] and it is an analogue of the so-
called F functional of Mhaskar and Saff [16, p. 194]. The latter plays an
important role in the determination of the support of the equilibrium
measure. The functional (3.9) plays a similar role in the context of this
paper—see the example in Section 5. For the following result, we recall the
notation (2.18).

Theorem 3.2. Let K ı E be compact, with cap(K) > 0. Under the
assumptions of Theorem 2.2, there holds

Ft(K) [ Ft(St)=−ct.(3.10)

Moreover, if (A.3) is also satisfied, then equality occurs in (3.10) iff

St ı SwK ı S t.(3.11)

Proof. This is very similar to the proof of Theorem 3.1. On integrating

V t+Q \ ct in E
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against wK, we obtain

ct [ F (V t+Q) dwK [
t

capG K
+F Q dwK=−Ft(K),

with equalities if K=St. So we have (3.10). Moreover, equalities can occur
iff

V t+Q=ct, wK a.e.,(3.12)

and

VwK=
1

capG K
, mt a.e.(3.13)

Now as SwK cannot contain isolated points (for example, by (2.12)), we see
that (3.12) must hold on a dense subset of SwK , that is this subset is con-
tained in S t. Since S t is closed, we obtain the second inclusion in (3.11).
Note that we did not use (A.3) here. Similarly, equality (3.13) must hold on
a dense subset of St. Also, due to (A.3), we have

VwK <
1

capG K

outside SwK , so that the above dense subset of St is contained in SwK . Since
the latter set is closed, we conclude that St ı SwK . L

Now, for any e > 0, the set

Ee :={z ¥ E : Q(z) [ e}

is compact, and it has positive capacity by (A.5), while minE Q=0 (recall
(2.19)). Then (3.10) gives, with K=Ee,

ct [ −Ft(Ee) [ e+
t

capG Ee
.

Here ct \ 0, since it is the minimum of the non-negative function V t+Q—
recall that the Green’s function g(z, t) is non-negative. On letting first
tQ 0 and then eQ 0, we obtain

lim
tQ 0+

ct=0.(3.14)
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Next, we have seen above, that the equilibrium relations (2.9), (2.10) of
Theorem 2.2 can be written in the form

(Sm t=) St ı S t(=Sm t).

It is easy to construct Q for which strict inclusion occurs. Then V t+Q may
attain its minimum on E also outside St. This can never happen for other
s ¥Mt. More precisely, we have

Theorem 3.3. Let Q be admissible on E. For any measure s ¥My with
y [ t and s ] mt, we have

Ss ı St.(3.15)

Proof. Consider the function

u(z) :=[Vs(z)−c(s)]−[V t(z)−ct],

which is superharmonic in G0St and bounded below (Vs \ 0 while V t is
bounded). Furthermore, we have by (2.1), for q.e. x ¥ “G,

lim
zQ x

u(z)=0+ct−c(s) \ 0,

the last inequality following by Theorem 3.1. Next, as V t is continuous and
Vs is l.s.c., we obtain for x ¥ St,

lim inf
zQ x, z ¥ G0St

u(z) \ u(x) \ 0

(recall (3.2)). Since s ] mt, u is non-constant and the minimum principle
superharmonic functions yields

u(z) > 0, z ¥ G0St.

(We need (A.3) here). Since u [ 0 on Ss (recall (2.15), (2.9)), we obtain
(3.15). L

We conclude this section with a concavity property of the functions ct
and ct−V t(z), with z fixed.

Theorem 3.4. Assume the conditions of Theorem 2.2 and fix z ¥ G. Then
the functions ct and ct−V t(z) are concave functions of t.
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Proof. Let t=at1+(1−a) t2, where a ¥ (0, 1) and consider the function

u(z) :=aV t1(z)+(1−a) V t2(z)−V t(z), z ¥ G.(3.16)

By Theorem 2.2,

u(z) \ act1+(1−a) ct2 −ct, z ¥ St,(3.17)

so that

F u dwt \ act1+(1−a) ct2 −ct.

On the other hand, an integration of (3.16) yields

F u dwt [ [at1+(1−a) t2−t]
1

capG St
=0.

We have used here the equilibrium relations of Theorem 2.3. Therefore

act1+(1−a) ct2 −ct [ 0(3.18)

and the concavity of ct follows. Now u is superharmonic in G0St, and
tends to 0 as zQ z0 ¥ “G, at least for q.e. z0. Also, u is continuous,
bounded, and is bounded below on St by a non-positive constant (see
(3.17), (3.18)). Hence (3.17) holds for all z ¥ G. After substituting there u(z)
from (3.16) and rearrangement, we obtain that ct−V t(z) is concave. L

4. PROOF OF THEOREM 2.4

Proof of part (a) of Theorem 2.4. We start with the proof of (2.20).
Assume that z ¥ St, for all t > 0. Then as V t > 0 and Q \ 0 by our assump-
tion (2.19), we obtain from (2.10) that

0 [ Q(z) [ ct for all t > 0.

Then (3.14) gives Q(z)=0, that is z ¥ S0. This proves the inclusion

3
t > 0

St ı S0.

For the other direction, we consider two cases.

GREEN EQUILIBRIUM MEASURES 313



Case 1: E is compact. Let 0 < e < t. Since E is regular, we have for all
z ¥ E,

V ewE(z)+Q(z)=
e

capG E
+Q(z).

Hence the left-hand side attains its minimum on E exactly for z ¥ S0. This
means that

S0=SewE and c(ewE)=
e

capG E
(4.1)

(recall (2.15), (2.16)). Then the inclusion

S0 ı St, t > 0,(4.2)

follows by Theorem 3.3 (obviously ewE ] mt as e < t).

Case 2: E is not compact. Then Q(z)Q. as zQ “G (or as zQ.).
Hence one can find a bounded open set G1 with G1 … G such that

Q(z) \ 1, z ¥ E 5 (G0G1).

We set

K :=E 5 G1

and note that K is a compact subset of G, and every z ¥K that belongs to
G1 is a regular point for K. Thus, for e > 0,

V ewK(z)+Q(z)=
e

capG K
+Q(z), z ¥ E 5 G1,

while for z ¥ E 5 (G0G1), the left-hand side is at least Q(z), that is \ 1. It
then follows, as in Case 1, that if e is small enough, (4.1) holds with E
replaced by K and we deduce (4.2) as before.

Next, we prove that the family {St} is increasing in t. We shall prove a
stronger statement, namely

St ı S t ı St+d -t, d > 0.(4.3)

The first inclusion is clear (recall (2.17) and the remarks thereafter) and the
second follows from Theorem 3.3, if we replace t there by t+d and take
s :=mt. L
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Proof of part (b) of Theorem 2.4. We first show that the family {mt}t > 0
is increasing, and continuous in the weak f sense. Both assertions follow
from the relation

mt+d−mt ¥Md -t, d > 0.(4.4)

The proof of (4.4) is exactly the same as in [4], but we include the proof
for the reader’s convenience. Let

Qt :=V t+Q−ct.

Then Qt is also admissible on E (see Remark (a) after the definition of
admissible Q), Qt \ 0 on E, and Qt=0 precisely on S t. Thus

S0(Qt)=S t.

Let m :=md(Qt) be the equilibrium measure of mass d for Qt. By what was
already proved, we have

St ı S t=S0(Qt) ı Sm.

(The last inclusion follows from Theorem 2.4(a)). Hence

Sm+m t=Sm,

so that the equilibrium relations for m can be stated as

Vm+Qt=const=min
E
(Vm+Qt) on Sm+m t .

Inserting here Qt, we arrive at

Vm+m t+Q=const=min
E
(Vm+m t+Q) on Sm+m t .

This means that the measure m+mt (of mass t+d) is the equilibrium
measure mt+d for the original Q. Hence (4.4) follows. L

Now let

St−0 :=0
y < y

Sy; St+0 :=3
y > t

Sy(4.5)

so that (see (4.3))

St−0 ı St−0 ı St ı S t ı St+0.(4.6)
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Since my converges weakly to mt as yQ t (by (4.4)), we must have

St ı 0
y < t

Sy=St−0.(4.7)

Next, if x ¥ St+0, then x ¥ Sy, y > t, so that

Vy(x)+Q(x)=cy, y > t.(4.8)

By Theorem 3.4, both cy and cy−Vy(x) are concave functions of y, there-
fore they are continuous, and if we let in (4.8), yQ t+0, we obtain

V t(x)+Q(x)=ct, -x ¥ St+0.

This shows that St+0 ı S t, and together with (4.6), (4.7), we have the first
statement of part (b), namely

St=St−0 ı St+0=S t.

Next, by well known properties of capacities (see (15, p. 128, Theorem 5.13
(a), (b)] for a proof for classical capacities, but the same proof works for
Green capacities), we have

lim
yQ t±0

capG Sy=capG St±0.(4.9)

Since the family {Sy}y > 0 is increasing, capG Sy is an increasing function of
y. Hence it is continuous if t ¨N, some countable set N. Then (4.9), (4.6)
show that for t ¨N,

capG St−0=capG St=capG S t=capG St+0.(4.10)

Since St ı S t, this implies that the Green equilibrium measure formed for
S t coincides with that formed for St. Therefore (see (2.13) of Theorem 2.3
and recall that we are assuming (A.3) in the present proof), we have

cap(S t0St)=0

and this completes the proof of (b). Another consequence of (4.10) is that
for t ¨N,

wy converges weakly to wt as yQ t.(4.11)

Indeed, let yn q t, nQ.. Then wyn Q wSt−0 in the weak f sense, by Lemma
2.10 in [8, p. 154]. Moreover the proof of that lemma shows that the first
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equality of (4.10) ensures that wSt−0=wt. Thus we get (4.11) provided
yQ t−0. Now let yn s t, nQ., and assume that wyn converges weakly to
s. Clearly

Ss ı St+0=S t.

Also,

capG Syn Q capG St.

Therefore the equilibrium relations (2.11), (2.12) yield (via the lower
envelope theorem and the principle of descent), that s=wSt. But wSt=wSt ,
as we have already mentioned, and this completes the proof of (4.11). L

Proof of parts (c), (d) of Theorem 2.4. By (3.5), (3.6) and the above
properties of capG St, we obtain that

d
dt
ct=

1
capG St

, t ¨N.

Being concave, ct is absolutely continuous, and in view of (3.14), we
conclude that

ct=F
t

0

1
capG Sy

dy.(4.12)

To show that mt and Q have the desired representations, one may proceed
exactly as in [4, pp. 800–801], replacing there gt (the Green function for St
with pole at .), by 1

capG St
−Vw t, in the present notation.

We suggest, however, a different proof. We shall show that for t, d > 0,

wt+d | St [
1
d
[ut+d | St −mt] [ wt,(4.13)

where n | S denotes the restriction of the measure n to S. Based on this, we
complete the proof of Theorem 2.4 as follows. By (4.13), (with a similar
inequality for t−d instead of t), and (4.11), there holds

dmt
dt
=wt, t ¨N.

Since mt is absolutely continuous in t (recall (4.4)), we obtain the desired
representation

mt=F
t

0
wy dy.
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Then the equilibrium relation (2.10) gives (see (1.6) and (4.12)) that

Q(z)=F
t

0

1 1
capG Sy

−Vwy(z)2 dy, z ¥ St,

and since {St} is increasing, while Vwy(z)= 1
capG Sy

q.e. in St for y > t, we
obtain the last statement (2.22) of Theorem 2.4. L

Proof of (4.13). For the case of logarithmic potentials this result was
proved by Totik (cf. [16, Theorem IV.4.9] or [17, Lemma 5.7]). The proof
is basically the same for our case, but some changes are required. Also our
notation is different from that in [16], so we provide the details. The main
ingredient is the following analogue of Theorem IV.4.5 in [16].

Theorem. Let m, n be measures of compact support in G, having finite
potentials. Assume that for some constant c we have

Vm(z) [ Vn(z)+c -z ¥ G.(4.14)

Let A be a subset of G in which equality holds in (4.14). Then

n | A [ m | A.

Assuming this theorem, we proceed as follows. Since St ı St+d, we have,
by Theorems 2.2 and 2.3,

(V t−ct)+d 1Vwt+d−
1

capG St+d
2 \ V t+d−ct+d, q.e. in St+d.(4.15)

Furthermore, equality holds q.e. in St. Therefore, if we set

a :=ct+d−ct−
d

capG St+d

we can rewrite (4.15) as

Vmt+d [ Vm t+dwt+d+a, q.e. in St+d(4.16)

with equality q.e. in St. Now, (3.5) ensures that a \ 0. Also mt+d is
C-absolutely continuous, hence (4.16) holds mt+d a.e., and we conclude by
the principle of domination (cf. [16, Theorem II.5.8]) that (4.16) holds
everywhere in G. Since equality holds q.e. in St, we obtain by the above
theorem that

(mt+dwt+d) | St [ (mt+d) | St .
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(Note that all measures involved are C-absolutely continuous, hence they
vanish on sets of capacity 0). So we have the first inequality in (4.13). The
proof of the second is similar: we have

(V t−ct)+d 1Vw t−
1

capG St
2 [ V t+d−ct+d, q.e. in St

(actually equality hold q.e. in St). On setting

b :=
d

capG St
−(ct+d−ct)

we obtain that

Vm t+dw t [ Vmt+d+b, q.e. in St

with actual equality q.e. in St. Here b \ 0, by (3.6). We then continue as
before, and obtain

(mt+d) | St [ (mt+dwt) | St

and this is the second inequality in (4.13).
Thus it remains to prove the above theorem. Since the Green potentials

Vm, Vn differ from the corresponding logarithmic ones Um, Un by a harmo-
nic function, we see that (4.14) is equivalent to

Um(z) [ Un(z)+u(z), -z ¥ G,

where u(z) is harmonic in G. If u(z) were a constant c say, this would be
Theorem IV.4.5 in [16]. However, the only property of c used in the proof
of that Theorem is, that the average of c over a circle centred at some point
is independent of the radius of this circle. Since harmonic functions enjoy
this property, we see that Theorem IV.4.5 actually was proved in [16] for c
replaced by a harmonic function. This completes the proof.

5. AN EXAMPLE

Let

G :={z : Re z > 0}; E :=(0,.);
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and let Q be convex. Then the convexity of Q and the convexity of the
Green function for the right-half plane guarantee that St is a compact
interval, say,

St=[at, bt] … (0,.).

(This follows just as for logarithmic potentials). We place a symmetry
hypothesis on Q, which is akin to that of evenness when dealing with
logarithmic potentials:

Q(x)=Q(x−1), x ¥ (0,.).

Then the uniqueness of mt gives

atbt=1.

Now if 0 < a < 1,

capG [a, a−1]=capG [a2, 1]=
KŒ(a2)
pK(a2)

,

where K and KŒ are complete elliptic integrals:

K(k)=F
1

0

dx

`(1−x2) (1−k2x2)
; KŒ(k)=K(kŒ); k2+k −2=1.

Also,

dw[a, a −1]=
1

KŒ(a2)
dx

`(x2−a2) (1−a2x2)
.

(All these may be easily derived from Example 5.14 in [16, pp. 133–134],
by mapping G conformally onto the unit ball in such a way that [a, a−1] or
[a2, 1] is mapped onto [−a, a] for some 0 < a < 1. One uses the confor-
mal map to transform the equilibrium density w.r.t. the unit ball to that
w.r.t. G. See [11] for a very similar situation; some of the necessary
calculations appear in [l, p. 121 ff.].) Thus for the set [a, a−1], Ft is

−Ft(a) :=−Ft([a, a−1])

=t
pK(a2)
KŒ(a2)

+
1

KŒ(a2)
F
a −1

a
Q(x)

dx

`(x2−a2) (1−a2x2)
.
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If we take

Q(x) :=x+x−1,

then

−Ft(a)=
p

KŒ(a2)
3 tK(a2)+1

a
4

=
p

KŒ(k)
3 tK(k)+ 1

`k
4 ,

with k :=a2. Differentiating with respect to k and setting =0 gives

5t dK
dk
−

1
2k3/2
6 KŒ(k)−5tK(k)+ 1

`k
6 dKŒ
dk
=0.(5.1)

Since [5, 8.123.2, p. 907]

dK
dk
=

E
kk −2

−
K
k
,

where

E(k) :=F
1

0

= 1−k2x2
1−x2

dx

is the complete elliptic integral of the second kind, we also obtain

dKŒ
dk
=
dK
dkŒ

(kŒ)
dkŒ
dk
=−

k
kŒ
3 EŒ
kŒk2

−
KŒ
kŒ
4 .

Then (5.1) can be rearranged to

5t 3 E
kk −2

−
K
k
4− 1

2k3/2
6 KŒ+1 tK+ 1

`k
2 3 EŒ
kk −2

−
KŒk
k −2
4=0,

or

t
1
kk −2

[EKŒ+EŒK−KKŒ]

=KŒ
k −2+2k2

2k3/2k −2
−

EŒ
k3/2k −2

=KŒ
1+k2

2k3/2k −2
−

EŒ
k3/2k −2

.
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Since the term in [] in the left-hand side is p/2 [5, 8.122, p. 907], we
obtain that the defining equation for at is

pt=KŒ
1+k2

`k
−2

EŒ

`k
; k=a2t ,

that is,

pt=atKŒ(a
2
t ) (a

−2
t +a

2
t )−2EŒ(a

2
t )/at.
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